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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The body of most creatures is composed of interconnected joints. During motion, the spatial

location of these joints changes, but they must maintain their distances to one another,

effectively moving semirigidly. This pattern, termed “biological motion” in the literature, can

be used as a visual cue, enabling many animals (including humans) to distinguish animate

from inanimate objects. Crucially, even artificially created scrambled stimuli, with no recog-

nizable structure but that maintains semirigid movement patterns, are perceived as ani-

mated. However, to date, biological motion perception has only been reported in

vertebrates. Due to their highly developed visual system and complex visual behaviors, we

investigated the capability of jumping spiders to discriminate biological from nonbiological

motion using point-light display stimuli. These kinds of stimuli maintain motion information

while being devoid of structure. By constraining spiders on a spherical treadmill, we simulta-

neously presented 2 point-light displays with specific dynamic traits and registered their pref-

erence by observing which pattern they turned toward. Spiders clearly demonstrated the

ability to discriminate between biological motion and random stimuli, but curiously turned

preferentially toward the latter. However, they showed no preference between biological

and scrambled displays, results that match responses produced by vertebrates. Crucially,

spiders turned toward the stimuli when these were only visible by the lateral eyes, evidence

that this task may be eye specific. This represents the first demonstration of biological

motion recognition in an invertebrate, posing crucial questions about the evolutionary history

of this ability and complex visual processing in nonvertebrate systems.

For the vast majority of animals, determining if an object in the environment is another animal

is crucial for survival. However, recognizing every single object individually quickly becomes

computationally impractical. We thus expect evolution to favor simple but robust systems with

general rules exploiting common characteristics that are able to cover most situations [1]. In

most vertebrates, there are characteristic spatiotemporal relationships between different body

parts while in motion—relationships imposed by the overall body plans of these animals.
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Because the vertebrate body consists of linked rigid segments, movements between joints are

accordingly semirigid—while some joints may seem independent from one another (e.g., wrist

to knee) with their relative distances varying during locomotion, other joint pairs are not (e.g.,

wrist to elbow), with relative distances that are fixed. Thus, when observed visually, the move-

ments of these animals result in a statistically identifiable idiosyncratic pattern. This is known

as biological motion.

Indeed, even when presented with just 11 dots moving in correspondence with the position

of the main joints of the human body, observers can correctly identify the presence of an agent

[2–6]. Such dot-only stimuli (called point-light displays) are completely devoid of structural

information, but retain motion-based information. The detection of these patterns in humans

is not confined to stimuli depicting conspecifics, but enables the detection of many other ani-

mals [7]. Even “scrambled” displays, where dots maintain a semirigid relationship, are per-

ceived as unknown, yet alive, entities [8]. Moreover, the discrimination of these patterns seems

to be present at a very young age [9]. Studies on animal models also allowed to demonstrate

the innateness of this ability [10,11]. Overall, studies in many other vertebrates [11–14], dem-

onstrated that this visuo-cognitive strategy is widespread across vertebrates and is thus evolu-

tionarily ancient. As such, biological motion detection is widely considered to be a key

mechanism in enabling the detection of living animals within a visual scene [6,8,15]. That this

system relies on motion [4,16] is important, as it has been proposed that motion-based visual

cues can be extracted more quickly than many static cues, are less vulnerable to disruption,

and are potentially governed by smaller networks of neurons [17].

In most arthropods, body plans and movements follow the same rules of semirigidity

described above for vertebrates, since their exoskeleton is composed of connected, rigid com-

ponents. Furthermore, like for many vertebrate species, the ability to visually differentiate

moving animals from other visual stimuli is likely to provide a strong selective advantage.

Because of these similarities in both form and function, we set out to explore whether biologi-

cal motion cues might also be used by invertebrates, suggesting an even more widespread abil-

ity across animals.

We used jumping spiders (Salticidae) to address this question, as these animals are among

the most visually adept of all arthropods, with vision playing a central role in a wide range of

behaviors [18]. The visual system of these animals is also unique, with a total of 8 eyes and

with different pairs thought to be specialized for different visual tasks [18]. The large anterior

medial eyes (AME or primary eyes) are forward facing and characterized by a narrow visual

field (<5˚) and high visual acuity [18] and are believed to play a central role in figure recogni-

tion [19,20]. The other 3 pairs are termed “secondary eyes.” The anterior lateral eyes (ALE)

have lower visual acuity but a much wider visual field (�±50˚) and are believed to be special-

ized for motion detection [21,22]. The posterior medial eyes (PME) are smaller and believed to

be vestigial in many jumping spiders species [23]. The posterior lateral eyes (PLE) are charac-

terized by a very wide visual field, and, together with the ALE, grant the spider a near 360˚

field of view. The function of the PLE seems to be similar to the ALE. Behavioral observations

support the functional division of labor hypothesis: When a moving target is detected by the

secondary eyes, the spider will pivot to face it directly and track it with the AMEs [21,24,25].

These rotational pivots are so rapid, precise, and robust that they are referred to as saccades

[26], analogous to the eye movements of other animals, including humans. However, salticids

do not turn toward all moving targets in the visual field, suggesting a selective attention–like

process and/or that secondary eyes can inform target differentiation, such as the detection/dis-

crimination of biological motion cues, rather than simply acting solely as motion detectors

[27]. This idea is also supported by the fact that, neuroanatomically, the 2 sets of eyes (primary
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and secondary) possess completely separate early visual processing pathways [28], suggesting

that there may be specialized computational tasks for which each network is responsible.

We tested Menemerus semilimbatus spiders in a forced-choice paradigm using point-light

display stimuli. For a detailed description of the procedure, see Materials and methods section.

Individuals were suspended above a polystyrene sphere so that their legs could contact it,

while the sphere was supported and allowed to spin freely by a constant stream of compressed

air from below. In spiders, the legs attach to the cephalothorax (the head)—thus, in this setup,

the spider remained in a fixed position and maintained a fixed head orientation, but was able

to move its legs freely, transferring its intended locomotor actions to the sphere. Stimuli were

then presented on a computer monitor placed 14 cm in front of the spider (Fig 1A). Two sti-

muli were presented simultaneously, entering the monitor space from opposite sides and

moved toward the center, where they disappeared. Using a video-based sphere tracking system

(FicTrac) [29], we then measured how spiders moved the sphere in response to the stimuli pre-

sentation. As stated above, jumping spiders produce rotations or “saccades” with their body

upon detection of a stimulus with the secondary eyes, turning rapidly about a single central

axis (like a top or a military tank). Thus, the measured output was the rotational locomotor

behavior—which of the 2 targets the spider chose to rotate toward.

We designed 5 different stimuli, paired in a total of 4 different conditions (Fig 1B; see Mate-

rials and methods section for details; videos of the stimuli are available in S1–S11 Videos). Sti-

muli were designed as spider versions of standard point-light display stimuli. The “biological

motion” stimulus consisted of a point-light display following the motion of a walking spiders

from a side-view perspective. In the “scrambled motion” stimulus, the starting point of each

dot was randomized, but it then followed the same path as in the biological motion stimulus—

a pattern perceived as biological in other systems [8]. The “random motion” stimulus consisted

of the same number of dots constrained to the same overall area as the biological motion

Fig 1. Stimuli movement across the screen and of each point. (A) Schematic representation of the setup, left half. The black horizontal line represents the computer

screen. The colored line above represents the position of the stimulus across time (color scale). Note the sudden color changes where the stimulus paused for 1.5 seconds

before starting to move again. Once at the center, the stimulus disappeared behind a white box. To turn toward any stimulus on the screen, the spider can produce

saccades, by pivoting around its vertical axis (z-axis of the sphere). Cones drawn toward the screen: visual field of the different eyes. In black, the visual field of the AME.

The striped area represents the extended visual field of the AME when moved. In gray, the visual field of the ALE. Note that the visual field of the remaining eyes covers all

the rest of the screen. Large overlay schematic on left depicts a jumping spider cephalothorax, seen frontally with the AME in black, and the ALE in gray. (B) Point-light

displays. On the left, the full set of dots for the first frame. For the biological, the silhouette has been superimposed on the dots, to show how they correlate with the spider’s

joints. For each stimulus, the paths for 3 points (the same 3 in all displays) is highlighted. Note how for the scrambled display, while the position of the points is different

from the biological, the path that they follow is identical. AAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1and2:Pleaseverifythatallentriesarecorrect:LE, anterior lateral eyes; AME, anterior medial eyes.

https://doi.org/10.1371/journal.pbio.3001172.g001
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stimulus, moving with the same velocities, but in randomized directions. A spider silhouette,

based on the same video used to create the biological motion stimulus and thus following the

same movements and an ellipse translating at the same speed of the other stimuli but without

the finer-scale joints movement was also used. In conditions 1 and 2 (Fig 2C), the random

motion stimulus was paired against the biological and the scrambled stimuli, respectively, test-

ing responses to biological versus nonbiological motion. In condition 3, the biological stimulus

was paired against the scrambled stimulus, thus presenting 2 semirigid stimuli. In condition 4,

the spider silhouette was paired against the ellipse, a control condition to observe responses

toward structurally detailed stimuli compared to moving stimuli of similar size but with mini-

mal detail.

Results

Only the main results are reported here. For the full analysis, see S1 Scripts. Firstly, we

checked whether the observed rotations of the sphere did truly describe the reaction of the

spider to the presence of any stimulus on screen. We found a strong correlation between

absolute rotational speed and the stimuli angular location (both occupied the same angle,

being symmetric to the center) (generalized linear mixed model [GAU : PleasenotethatGLMMhasbeendefinedasgeneralizedlinearmixedmodelinthesentenceWefoundastrongcorrelationbetween::::Pleasecheckandcorrectifnecessary:LMM] analysis of devi-

ance, chi-squared = 3330.8, p-value < 0.0001) across all experimental conditions (difference

between conditions: chi-squared = 2.52, p-value = 0.47) (Fig 2A and 2B). We also observed

a significant interaction between stimulus position and condition (chi-squared = 46.77,

p-value < 0.0001): Specifically, we found this correlation to be stronger in the silhouette

versus ellipse condition than in the other conditions (post hoc analysis, Tukey correction.

Silhouette ellipse versus scrambled random: est. = 0.004, SE = 0.001, t = 4.73, p< 0.0001

versus biological scrambled: est. = 0.005, SE = 0.001, t = 6.31, p< 0.0001 versus biological

random: est. = 0.004, SE = 0.001, t = 5.12, p < 0.0001). This was likely due to the fact that

the silhouette and the ellipse stimuli are composed of more black pixels, resulting in higher

contrast between the stimuli and the white background than the point-light displays. This

would have allowed those stimuli to be detected earlier, strengthening the correlation

between rotational speed and stimulus position. All together, these observations suggest

that the observed Z rotation of the sphere is indicative of saccades produced by the spiders

toward the stimuli on screen.

Having established that, we proceeded by analyzing the average direction of the saccades.

To do so, we multiplied by 1 Z rotation values in a direction congruent with the position of

the more biological stimulus, while we multiplied them by −1 when congruent with the other.

We then used this as the dependent variable to compute the spider’s preference (Fig 2C).

During stimulus presentation, the spiders turned more toward the ellipse over the silhouette

(est. = −23.73, SE = 3.41, t = −6.96, p< 0.0001), the random over the scrambled (est. = −15.1,

SE = 3.41, t = −4.435, p = 0.0001), the random over the biological (est. = −13.37, SE = 3.38,

t = −3.96, p< 0.0006), and showed no difference in the biological versus scrambled condition

(est. = −1.04, SE = 3.3, t = −0.32, p = 1). When considering the 30-second between-stimulus

period instead, we observed no difference for all conditions (post hoc analysis, Tukey correc-

tion. Biological random: est. = 0.52, SE = 1.59, t = 0.32, p = 1; biological scrambled: est. = 1.68,

SE = 1.53, t = 1.1, p = 0.922; scrambled random: est. = 2.46, SE = 1.68, t = 1.47, p = 0.706; sil-

houette-ellipse: est. = 3.4, SE = 1.72, t = 1.97, p = 0.328). Note that most saccades happens as

soon as the stimuli start moving (Fig 2B). Among those sections, the higher frequency of rota-

tion can be observed around 4.5 seconds from stimuli appearance (Fig 2B), when both are

positioned at an angle of�±50˚ (Fig 1A). As stated in the introduction, this angular position

likely aligns with the start of the ALE field of view.
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Fig 2. Results. (A) Recorded peak rotation speeds for each trial (every set of 10 stimuli pair presentations; ntrials = 188; nspiders = 60). The x-axis

represents time (in seconds) from the start of the experiment, and the y-axis represents rotational speed (in degrees per second). Individual

dots represent peaks, while the dark line shows the running average. In the top-right corner, a schematic representation of the spider on top of

the sphere, with the 3 possible axis of rotation. The data presented in this and the following graphs refer to rotation observed on the sphere’s z-

axis, which correspond to the spider’s saccades. Below, colors show when the stimuli were onscreen (purple) or not present (gray). When

stimuli are present, the average rotational speed increases, while when stimuli are not present, peak rotational speed remains low. This suggests

that rotational speed is representative of saccades and that spiders are turning toward stimuli (see Materials and methods section). (B) Time-

aligned responses across all stimuli. Upper portion: same as panel A, with addition of right y-axis indicating position of the stimuli on the

screen (in degrees from the center, dashed purple line). Below portion: histogram of the peaks frequency. Peak frequency increases when the

stimuli are moving and decreases when they are stationary (flat sections of the stimulus position line). (C) Stimulus preference for each

condition. The x-axis represents the rotational speed. Positive or negative values correspond to a preference for the stimulus indicated. Purple

boxes refer to sections when the stimuli were visible (during stimuli period), and gray boxes refer to sections when stimuli were not visible

(between stimuli period). Dashed lines in the box represent the average, and shaded areas represent SE. For this analysis, every peak was either

positive, when turning toward the stimulus depicted on the right of the graph (the one with biological characteristics), or negative, when

turning toward the stimulus shown on the left. Thus, average speed is a proxy of relative preference, with 0 corresponding to no preference.

For the biological versus random, scrambled versus random, and silhouette versus ellipse, the spiders preferred the less realistic stimulus. We

observed no preference in the biological versus scrambled condition. Across all conditions, there was no preference during the 30-second

between-stimuli period. Data underlying panels A and B are available in S1 Data. Panel C depicts result of the GLMM based on the same data.

The analysis script is available in S2 Analysis. GLMM, generalized linear mixed model; SE, standard error.

https://doi.org/10.1371/journal.pbio.3001172.g002
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Discussion

These results clearly demonstrate the ability of jumping spiders to discriminate between bio-

logical motion cues. The results also show strong internal consistency, with preferences across

all stimulus pairs for the less realistic stimuli, with the exception of the paired semirigid stimuli

where no preference was observed. We initially found this “reverse choice” surprising, as we

expected spiders to turn toward the stimulus with the highest probability of being a living

organism, as has been previously found in other systems [9,11]. Even though the stimuli may

have been perceived as predators or competitors, given their size, it seems unlikely that our

result can be explained as an avoidance effect. Rather than turning toward the “less dangerous”

stimulus under this perspective, we would have expected spiders to have maintained their

attention on the “more dangerous” stimulus and possibly attempted to run away. However,

orientation toward the less-biological stimulus appears consistent with the functional organi-

zation of the visual system of the jumping spiders. As described above, these animals produce

saccades upon detection of a target with the secondary eyes, allowing further inspection with

the AME. As per our initial hypothesis, the secondary eyes may be immediately able to decode

motion-based information, enabling them to determine which of the stimuli requires more

detailed investigation. In a forced-choice paradigm, it may be advantageous to focus the AME

on the stimulus that cannot be decoded with the secondary eyes alone, particularly since the

other target will still remain in the visual field of the secondary eyes following rotation. More-

over, it is crucial to consider that many of the species in which a preference for biologically

moving stimuli has been observed are highly social. Indeed, it has been amply argued that an

innate “animacy detection” system may exist because of the need of these animals to quickly

aggregate with social companions [30]. In such species, it would be advantageous to show an

early attentional preference to movements that are more likely to be generated from an agent.

However, jumping spiders are not typically social; thus, we should not necessarily have the

same expectation for stimulus preference. It is crucial to point out that motion cues in point-

light displays can be used for much more than just “animacy detection.” It has been shown

that humans cannot only detect the presence or absence of a living being in the stimulus, but

also much finer details, like, for example, the sex of the actor [31]. It has been suggested that,

also, jumping spiders could detect and use more subtle motion cues to discriminate between

different species to approach or avoid, like conspecifics or ants [32]. The lack of a preference

between the scrambled and the biological displays in our experiment seems to point against

the presence of such finer discrimination, but more direct inquiries are needed to provide a

definitive answer.

In our setup, spiders could only observe the target with both AME and ALE eyes when the

stimuli reached the center of the screen (see Fig 1A). Specifically, this opportunity for pri-

mary–secondary overlap occurs after�7s from the stimuli appearance, yet the majority of dur-

ing-stimulus turns, and thus choices, occurred before this phased (see Fig 2B). That spiders

demonstrate this preference even when targets can only be viewed by the secondary eyes is

striking. Indeed, multiple studies have been carried out about the visual discrimination abili-

ties of jumping spiders [33,34], and the secondary eyes have been found to possess a reasonably

high spatial acuity [22,24,35]. However, even though it has been suggested that these eyes are

capable of feats beyond mere motion detection [27], no study before had directly demon-

strated that these eyes can solve a discrimination task without aid from the primary eyes. As

point-light displays are designed to contain minimal visual detail, the discrimination operated

by the secondary eyes must be based on motion.

Our findings provide evidence for the discrimination of point-light display biological

motion stimuli [3] in an invertebrate. If this is evidence of convergent evolution or of deep
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homology (e.g., presence in the shared common ancestor) still remains unclear. However, it is

widely believed that the complexity of high-acuity vision in the vertebrates and invertebrates

(e.g., vertebrates, insects, spiders, and mollusks) have evolved independently [36], suggesting

that this is more likely a result of convergent evolution. Indeed, the detection of biological

motion represents a solution or strategy to the problem of “animacy detection” [6,8], which

could have been adopted by spiders and vertebrates alike. We suspect that, given this, future

work in other lineages (e.g., insects and mollusks) may reveal similar results. Indeed, the use of

motion perception by insects to extract other forms of information has been amply studied:

For example, flies, bees, and wasps use optic flow information to calculate ground speed and

thus navigate the environment [37], while locusts use of motion parallax to estimate distance

[38]. These systems remain different from the detection of biological motion, as they rely on

changes in the visual scene caused by one’s own movement, while responses to dynamic targets

still function when the observer is stationary.

The presence of a biological motion-based detection system in jumping spiders deepens

questions regarding the evolutionary origins of this visual processing strategy and opens the

possibility that such mechanisms might be widespread across the animal kingdom and not

necessarily related to sociality.

Materials and methods

Subjects

We used 60 M. semilimbatus in the experiment, of which 31 were females, 10 were males, and

19 were juveniles. The spiders were collected in the wild, in the garden of Esapolis’ living insect

museum, Padua, Italy between June and August 2020. Only animals with a body length bigger

than 7 mm were collected to guarantee the proper functioning of the methodology. Once

caught, the spiders were maintained in clear plastic boxes measuring 80 × 65 × 155 mm and

immediately fed a small Tenebrio molitor to ensure a shared level of satiation before the test.

The day after capture, a magnet was fixed to the head of each subject to allow us to constrain

the animal on top of the treadmill for the duration of the experiment (see next paragraph).

Subjects were first constrained between a sponge and a latex film. The latter presented a hole

in correspondence with the location of the spider’s head. Here, a 1 × 1 × 1 mm neodymium

magnet was applied using a UV activated resin. Each spider underwent its first test between 1

and 3 days after receiving the magnet. At the end of the full experiment, each spider was again

constrained under the latex film to remove the magnet. Spiders were then freed in the same

place they were captured. Magnets did not appear to negatively affect the animals during the

short period in which they were housed in the lab, and spiders that had the magnet removed

appeared to move and behave normally.

Experimental apparatus

In order to ensure that spiders would always see the stimuli from the same position, orienta-

tion, distance, and, most importantly, both stimuli at the same time, we built a sphere-based

treadmill, similar to that described in Moore and colleagues [29]. Similar procedures have

been used in jumping spiders, and these animals appear to react to digital stimuli as if they

were freely moving in the environment [22,25,39–41].

To construct the treadmill, a polystyrene sphere (diameter = 38 mm) was placed on top of a

shallow concave holder. A second piece of plastic with a 24-mm hole in the center was placed

on top of the sphere, leaving 1 mm of clearance where this plate met the sphere. In this setup,

the sphere was free to rotate, but its overall position was fixed in place. The plastic holder was

designed so that the side of the sphere was still mostly visible, with the plastic pieces covering
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only around 30% of its surface, and the top portion of the sphere was left exposed so that the

spider could contact/hold it. This plastic holder also contained 16, 1-mm diameter air inlets

directed toward the sphere. When a compressed air source set to a constant pressure of 50

mbar was connected to the plastic holder, it produced an air cushion that the sphere floated

on, providing almost frictionless rotational movement. The pressure was low enough not to

cause the sphere to rotate by itself. The rotational inertia of the ball was also such that the spi-

der could rotate it freely.

To initiate each trial, we used a stick with a magnet glued at one of its ends to pick up a spi-

der. After adjusting the position/orientation of this stick, we positioned the spider on top of

the sphere so that the center of the spider’s cephalothorax was at the top of the sphere, its body

aligned toward the screen, and at a height above the sphere that enabled a normal walking gait.

In this setup, the subject could not move nor rotate, as its cephalothorax was fixed in place, but

it would still behave as if it was able to move, acting directly on the sphere. By measuring

sphere rotations, we could infer the spider’s intended action.

To enable tracking of the sphere, we used acrylic paint to draw uneven shapes across its sur-

face. From the side view, we recorded video of each experiment at 120 fps. By running the Fic-

Trac software by Moore and colleagues [29] on these videos, we were able to extract the exact

orientation of the sphere in each frame, expressed by its X (left-right), Y (fore-aft), and Z (rota-

tional) rotational components, and, in turn, the rotational speed.

After every 4 trials, the system was disassembled to clean the sphere and the plastic pieces

from any silk residue, which might interfere with sphere rotation.

Stimuli of the experiment

All stimuli were based on a video recording of the side view of a Salticus scenicus walking from

the right to the left of the frame. The video was captured with a NAU : PleaseprovidethemanufacturernameandlocationforNikonD7200DLSRcamerainthesentenceThevideowascapturedwitha::::ikon D7200 DLSR camera

(Nikon, USA), focused on a 5-cm wide runway recorded at 60 fps and 1080p. From the video,

we extracted 72 frames, which contained a total of 8 full steps of the subject, with step defined

as a movement of all 8 legs starting and terminating with each limb occupying the same posi-

tion relative to each other. In each frame, we manually registered the position of the eyes, the

pedicel, the spinneret, and for every leg, the end of the tarsus, the joint between the metatarsus

and the tibia, and the joint between the patella and the femur. If any of the points were not visi-

ble in a specific frame (which did often happen especially for the right side legs, being covered

by the body), the point position was registered as not available.

All stimuli were presented to the spider on a 1080p screen, with a pixel size of 0.248 mm,

positioned 14 cm away from the center of the treadmill sphere. In each condition (except for

the single-stimulus control trials), 2 stimuli were presented simultaneously, one entering from

the left side and the other entering from the right, both moving toward the center, disappear-

ing behind an ideal white screen in the exact center of the monitor. The presentation of the sti-

muli was controlled by a script written in python 3.8 [42], using the package PsychoPy [43].

The same script also controlled the camera recording of the treadmill, with the package

OpenCV [44]. This way, stimulus presentation and camera recording were matched, in order

to know the position of the sphere for every frame of the display. All the stimuli were presented

on the screen at 30 fps. Videos of the stimuli are available in S1–S11 Videos.

Biological motion. For this point-light display stimuli, a black dot was presented at each

anatomical location registered in the original video, rescaled in order for the stimulus to

occupy a size of 170 × 60 px on the screen (the total width and height changed slightly follow-

ing the extension and retraction of the spider legs). The starting position of the stimulus was

set outside the screen, so that the picture would not be shown suddenly on the screen but
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would instead appear to move in from outside. After every 72 frames (all the frames extracted

from the original video), the stimulus would remain static for 45 frames, then loop over the

original 72 frames, but, this time, translated in the X direction to center the first frame over the

current position. This 45 frames pause was repeated another time and was followed by a third

loop iteration, which terminated with the stimulus disappearing progressively behind a white

box at the center of the screen. A full stimulus presentation, from start to end position, was a

total of 270 frames, or 9 seconds at the display rate of 30 frames per second. The total time the

stimulus was visible to the spider, thus excluding the time it took to appear from outside of the

screen, was 8 seconds.

Scrambled motion. In the scrambled motion stimulus, the path of every dot was main-

tained, but their relative positions to one another in the first frame was randomized. In other

species tested, scrambled motion stimuli are still perceived as biological, giving the impression

to the observer of seeing an unknown living creature [8]. To generate this stimulus, we calcu-

lated for every point in each frame its distance to the position it occupied in the previous one,

but while maintaining the center of the stimulus in a fixed position. Then, the position of every

dot was randomized for the first frame. The position of the dots in the following frames would

be determined by reapplying the distance and direction extracted from the original stimulus to

the random position of the dot. We then reapplied the translation, moving all the dots by plac-

ing the center of the picture in correspondence with the center of the original stimulus. This

way, the scrambled motion stimulus retained the same speed as the original, by globally trans-

lating the same amount, and each dot would follow the same path, but the relative position of

the dots in relation to one another was eliminated. We created 4 different versions of this stim-

ulus, with 4 different randomizations. For each trial, one of these 4 was chosen, so that each

spider would never see the same randomization in different trials (for example, 2 different con-

ditions present the scramble motion—biological versus scrambled and scrambled versus ran-

dom—any one spider will see 2 different versions of the scrambled stimuli, 1 for each

condition), and different spiders would see different versions for the same condition.

Random motion. In the random motion stimulus, the position of every dot in every

frame was randomized, and according to the literature, this should not be perceived as biologi-

cal [12]. To build this stimulus, we began with the initial, full stimulus used in the biological

motion stimuli. We then followed the same procedure as for the scrambled motion but defined

the position of the dots in frames 2 to 72 using the same distance from the previous frame as

the biological motion stimulus, but in a random direction. Thus, the magnitude, or amount of

motion, is maintained, but each dot takes a random path. To prevent dots from shifting too far

from the center, we recalculated a new random direction if the resulting position of the dots

exceeded the perimeter of an ideal rectangle of 170 × 60 px, exactly as the one enclosing all the

dots in the biological motion stimulus. We created 4 different versions of this stimulus, with 4

different randomizations, following the same presentation as per scrambled motion.

Silhouette. This stimulus was intended as a control, to test whether spiders would show a

preference in this setup at all. Previous experiments have shown that jumping spiders respond

differently to different silhouettes [45], but we wanted to evaluate responses to stimulus pre-

sentation on our spherical treadmill. For this stimulus, we connected the dots from the biologi-

cal motion stimulus belonging to the same leg, resulting in a thick black line representing the

full leg in its movements. We also added black shapes to represent the spider cephalothorax

and opisthosoma, based on the original walking spider video. One edge of each body segment

shape was then centered on the picture and each shape tilted according to the eyes and spin-

neret dots. Thus, this stimulus moved in the same way as the biological motion stimuli, but

provided a full silhouette of the target in terms of static appearance.
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Ellipse. This shape matched exactly the silhouette in terms of the number of black pixels.

For every frame, the center of the ellipse was placed to the coordinates of the center of the bio-

logical motion, and, in turn, all the other stimuli.

Detailed procedure

Each spider underwent a total of 4 trials, 2 of which were administered on a given day, and the

other 2 were administered after a 3-day break. Every trial started with 5 minutes of habitua-

tion, in which no stimulus was shown, just a white screen. This phase was included in the

experiment to give the animals enough time to decrease their level of arousal from the manipu-

lation before the experiment started and revert to normal behavior. After habituation, the first

presentation started, where 2 stimuli would appear, one from the left and one from the right,

move toward the center of the screen, and then disappear. As described, the stimuli stop twice,

for around 1.5 seconds, before reaching the center. After the stimulus disappearance, a 30-sec-

ond pause, with no presentation, followed. This pattern of presentation pause was repeated

another 9 times, for a total of 10 stimuli presentation. Thus, a full trial lasted 11 minutes and

30 seconds. In a given trial, the same stimulus pair was shown for all the 10 stimuli presenta-

tion, and the starting position of each stimulus (left or right) would follow a semi-random pat-

tern (left, right, left, right, left, left, right, right, left, right or vice versa for the other stimulus).

This way, each trial was part of a single condition. Each spider was subjected to a different con-

dition (namely, a specific stimuli pair) in every trial and was therefore presented with all exper-

imental conditions. The order of the trials was randomized for each spider.

After the end of the experiment, we added a fifth condition: ellipse versus nothing. Only 1

subject was used to test it, as it was only intended to retrieve a baseline measure of preference,

to inform the interpretation of the data of the other conditions.

Data analysis

The sphere tracking software FicTrac [29] provided, among other measures, the radians per

frame that the sphere rotated around its x-, y-, and z-axis, for each video frame (Fig 2A). A

rotation around each of these axes represented a different kind of motion of the spider:

• x-axis: Parallel to the screen, the rotation of the sphere around this axis would occur when

the subject would move forward or backwards. From the perspective of the side-view camera

that was used, a counterclockwise rotation would happen when the spider moved forward

and vice versa.

• y-axis: Perpendicular to the screen, such that rotation around this axis would happen if the

spider moved directly sideways (left or right).

• z-axis: Vertically, through the spider, such that rotation would be registered when the spider

rotated around its center. A turn to the left of the spider would correspond to a clockwise

rotation and vice versa.

Other types of movements (e.g., the spider moving diagonally) would result in a combina-

tion of the 3 rotations. Before further analysis, the values of each axis were smoothed with a

Butterworth filter (order = 3 and critical frequency = 0.5) from the python package SciPy [46].

What we were interested in were the turns toward the left and toward the right, which would

correspond with z-axis rotation peaks in the absence of X and Y components. Due to noise in

the system and to individual differences of the spiders and videos, movements typically con-

tained rotational velocities across all 3 axes. To reduce the impact of these cross-axes effects,

for every frame, we subtracted from the absolute value of Z the absolute value of X and Y, with
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0 as the minimum allowable resulting value. Then, the original sign of Z component (+ or −)

was reapplied. This way, Z peaks with low concurrent X and Y components remained high,

while highly coupled rotations would disappear. Thus, saccadic movements (large Z rotations

and low X and Y components) could be clearly separated from non-saccadic movements such

as walking forwards (large X and low Y and Z) or curved walking (large X, large Y, and

medium Z).

To analyze the impact of stimuli on saccadic turns, we focused on the stimuli presentation

part of the trials, including the 30-second pauses between stimuli pair presentations, and

changed the sign of each rotation according to the position of the expected preferred stimulus:

Instead of positive numbers meaning left and negative meaning right, positive numbers repre-

sented rotations toward the more biologically realistic stimulus and vice versa. For example, in

condition biological motion versus scrambled motion, biological motion was coded as posi-

tive. Note that because of this conversion, the scrambled motion stimulus was negative in one

condition (biological versus scrambled) but positive in another (scrambled versus random).

The same coding was maintained for the pause section following each stimulus, with rotation

toward the side in which the correct stimulus was previously present being positive. We then

isolated peaks higher than 0.001 rad/sec for both the positive and the negative space and used

these peak heights and times in our analysis.

With this coding, a saccadic preference for the more realistic stimulus (i.e., more turns

toward it) would result in a positive peak average, saccadic preference for the less realistic stim-

ulus will result in a negative average, and an average of 0 would signify no saccadic preference.

Indeed, we expected to observe no preference for the between-stimulus sections, regardless of

condition, given the a priori expectation that rotational movements in the absence of stimuli

should be directed randomly.

Statistical analysis

All data and graphs were prepared using python 3.8 [42] with the libraries pandas [47,48],

NumPy [49,50], SciPy [46], and Matplotlib [51]. Analyses were carried out with R 4.0.2 [52],

using the packages glmmTMB [53], car [54], emmeans [55], DHARMa [56], and readODS

[57]. For the full script, see Supporting information text. The full database is available as a Sup-

porting information. As suggested by Forstmeier and Schielzeth [58], we included in the mod-

els only factors that we had an a priori reason for including. First, we calculated a model with

the absolute (without the sign coding the direction) peak height as a dependent variable and

the angular position of the stimulus on the screen as a predictor. We employed a generalized

linear mixed-effect model, with subject as a random effect. This analysis was performed to

check whether extracted peak height represent rotational speed of the spider. Indeed, we know

from previous literature [22,25] that when moving on similar spherical treadmills, the rotation

caused by the detection of a target (saccadic turns) performed by spiders match very closely

the actual angular position of the target. Moreover, these saccadic rotations tend to take similar

amounts of time, resulting in faster rotation when the target angle is higher. Subsequently, we

calculated a second model, using peak height (with positive values when its direction was con-

gruent with the more realistic target and vice versa) and the dependent variable, condition,

and stimulus presence (visible or not visible) as predictors. Here, we expected the average peak

height to be indistinguishable from 0 when the stimulus is not visible (as saccadic rotations

should be less frequent, and even if they did appear, they should be toward a random direc-

tion) and to be higher than 0 for conditions biological versus random, scrambled versus ran-

dom, and silhouette versus ellipse, signifying a preference for the biologically structured

stimulus.
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Methods validation results

To check whether our scoring based on the average Z rotation was indeed an effective proxy

for preference, in condition 5, we presented spiders with a choice between a moving ellipse

and nothing on the other side. As expected, we observed a clear preference for the ellipse posi-

tion when the stimulus was on screen (post hoc analysis, Tukey correction est. = 107.0,

SE = 12, t = 8.89, p< 0.0001) and no preference in the 30-second between-stimulus time

(est. = −24.5, SE = 13.9, t = 1.76, p = 0.155), supporting the utilized score as representative of

spiders saccadic preference.

Supporting information

S1 Data. Data used in the analysis. The first sheet contains metadata. The second sheet con-

tains all the data for the experiment with the X, Y filtering on Z applied. The third sheet con-

tains the control with the ellipse put in comparison with no stimulus. The fourth sheet is the

same as the second, but without the filtering applied.

(XLSX)

S1 Script. R and python scripts. This compressed folder contains 2 file. The first file (Analy-

sis) contains the full R script of the data analysis. The second one (DataFiltering) contains the

python script used to subtract X and Y value for the Z, as described in the Materials and meth-

ods section, and to find peaks.

(ZIP)

S1 Video. Biological motion point-light display. The size, speed, and positions are true to the

experiment. This example moves left to right, for right to left version the video was mirrored.

A second stimulus, depending on the condition, would follow the same path, just mirrored.

(MP4)

S2 Video. Spider silhouette. The size, speed, and positions are true to the experiment. This

example moves left to right, for right to left version the video was mirrored. In the experiment,

this stimulus was always paired with the ellipse, which followed the same path, just mirrored.

(MP4)

S3 Video. Ellipse. The size, speed, and positions are true to the experiment. This example

moves left to right, for right to left version the video was mirrored. In the experiment, this

stimulus was always paired with the silhouette, which followed the same path, just mirrored.

(MP4)

S4 Video. Scrambled motion point-light display, first randomization. The size, speed, and

positions are true to the experiment. This example moves left to right, for right to left version

the video was mirrored. A second stimulus, depending on the condition, would follow the

same path, just mirrored.

(MP4)

S5 Video. Scrambled motion point-light display, second randomization. The size, speed,

and positions are true to the experiment. This example moves left to right, for right to left ver-

sion the video was mirrored. A second stimulus, depending on the condition, would follow the

same path, just mirrored.

(MP4)

S6 Video. Scrambled motion point-light display, third randomization. The size, speed, and

positions are true to the experiment. This example moves left to right, for right to left version

the video was mirrored. A second stimulus, depending on the condition, would follow the
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same path, just mirrored.

(MP4)

S7 Video. Scrambled motion point-light display, fourth randomization. The size, speed,

and positions are true to the experiment. This example moves left to right, for right to left ver-

sion the video was mirrored. A second stimulus, depending on the condition, would follow the

same path, just mirrored.

(MP4)

S8 Video. Random motion point-light display, first randomization. The size, speed, and

positions are true to the experiment. This example moves left to right, for right to left version

the video was mirrored. A second stimulus, depending on the condition, would follow the

same path, just mirrored.

(MP4)

S9 Video. Random motion point-light display, second randomization. The size, speed, and

positions are true to the experiment. This example moves left to right, for right to left version

the video was mirrored. A second stimulus, depending on the condition, would follow the

same path, just mirrored.

(MP4)

S10 Video. Random motion point-light display, third randomization. The size, speed, and

positions are true to the experiment. This example moves left to right, for right to left version

the video was mirrored. A second stimulus, depending on the condition, would follow the

same path, just mirrored.

(MP4)

S11 Video. Random motion point-light display, fourth randomization. The size, speed, and

positions are true to the experiment. This example moves left to right, for right to left version

the video was mirrored. A second stimulus, depending on the condition, would follow the

same path, just mirrored.

(MP4)

S12 Video. Example of a single-stimulus pair presentation for the condition “silhouette

versus ellipse”. Initially, the spider is in a normal locomotion phase. Around second 18 of the

video, the first saccade can be appreciated, specifically toward the right side of the screen

where the ellipse stimulus appeared (which will enter the visual field of the camera shortly).

Then, some more saccades follow.

(MP4)
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